Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-Lade model ⋆
نویسندگان
چکیده
In Reference [1] the authors have shown that numerical differentiation is a competitive alternative to analytical derivatives for the computation of consistent tangent matrices. Relatively simple models were treated in that reference. The approach is extended here to a complex model: the MRS-Lade model [2,3]. This plastic model has a cone-cap yield surface and exhibits strong coupling between the flow vector and the hardening moduli. Because of this, derivating these quantities with respect to stresses and internal variables —the crucial step in obtaining consistent tangent matrices— is rather involved. Numerical differentiation is used here to approximate these derivatives. The approximated derivatives are then used 1) to compute consistent tangent matrices (global problem) and 2) to integrate the constitutive equation at each Gauss point (local problem) with the Newton-Raphson method. The choice of the stepsize (i.e. the perturbation in the approximation schemes), based on the concept of relative stepsize, poses no difficulties. In contrast to previous approaches for the MRS-Lade model, quadratic convergence is achieved, for both the local and the global problems. The computational efficiency (CPU time) and robustness of the proposed approach is illustrated by means of several numerical examples, where the major relevant topics are discussed in detail.
منابع مشابه
Nonlinear inelastic static analysis of plane frames with numerically generated tangent stiffness matrices
For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-Raphson method to reduce the cost and time required by the analysis. In this paper, a ...
متن کاملPlastic flow potential for the cone region of the MRS–Lade model
The original formulation of the MRS–Lade model, with non–associated flow rule on the meridian plane in the cone region, has a corner. In order to reduce the computational effort of corner solution algorithms, a modified plastic flow potential for the cone part is found in the literature. This modification may have a non–admissible flip over of the flow vector in the cone–cap intersection if the...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کامل